Article Document Academic Article Information Content Entity Journal Article Continuant Continuant Entity Entity Generically Dependent Continuant 2025-05-09T09:56:36 RDF description of Lysine acetylation regulates the interaction between proteins and membranes - http://repository.healthpartners.com/individual/document-rn27350 <p>Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes.<p> Drugs and Drug Therapy 10.1038/s41467-021-26657-2 Nature communications Genetics 19442 2022-02-21T22:48:57.408-06:00 12 Animal Studies public 1 document-rn27350 33144 Lysine acetylation regulates the interaction between proteins and membranes